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ABSTRACT

This report contains the results of the research project entitled:

"Microcracking and Toughness of Ceramic-Fiber/Ceramic-Matrix Composites

Under High Temperature" supported by the AFOSR. Microcracking mechanisms

and toughness of Nicalon (SiC)/SiC composite at elevated temperature are

studied analytically and experimentally. First the fiber distribution

patterns in the ceramic composite are determined by observing the specimens

under optical and scanning electron microscopes. Thus the effect of fibers

and fiber interactions on the microcrack propagation are investigated

analytically through the single-fiber, the two-fiber, and the ring models.

Monolithic SiC specimens are tested under varying temperature to determine

the effect of temperature on the toughness of the matrix material. The

Nicalon/SiC composite specimens are then tested at various temperatures.

The combined effect of temperature and fibers on the toughness of the matrix

is expressed by introducing the concept of "apparent fracture toughness".

The experimental results indicate that for the Nicalon /SiC composite the

"apparent fracture toughness" decreases with local volume fraction of fibers

Vf and temperature. An analytical model to predict this behavior is

developed and used in the analysis of the experimental data. Finally,

recognizing the importance of the fiber/matrix interface on the overall

toughness and strength of the material, an experimental/analytical technique

is developed to determine the interfacial shear strength.
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1. Introduction

As is well known ceramic matrix composites have recently attracted a

great deal of attention due to the promise they hold for developing high-

temperature resistant materials with high toughness. Up to now the

structural applications of ceramics and ceramic composites have been limited

becaqse of the fact that their brittleness makes them an unlikely candidate

in applications where high toughness is required. But the combination of

advanced manufacturing techniques and new ceramic composites appears to

satisfy both conditions of resistance to high-temperature oxidation and high

toughness. The current study focuses on one such material, namely,

Nicalon/SiC composite manufactured by Amercom, Inc., Chatsworth, CA.

It has long been recognized that the low toughness of ceramics results

from the presence of microcracks or voids in the material. These

microcracks may develop due to inclusions, thermal expansion mismatch, phase

transformation, or thermal expansion anisotropy. Whatever the initial

agent, under sustained mechanical and/or thermal loading, these microcracks

may coalesce into a critical flaw, causing the failure of the material. In

fiber reinforced ceramic composites the failure mechanism is much more

complicated because of the presence of fibers. For example, under uniaxial

tension fiber matrix microcracks may appear. At sustained loading these

cracks may join other cracks to form a dominant flaw or may be deflected at

the fiber/matrix interface. It appears that the fiber/matrix interface

plays an important role in the overall toughness and strength of the

composite. For instance, a relatively weak interface may help deflect

matrix czacks while a strong interface may lead to fiber fracture and the

eventual catastrophic failure of the composite. The literature on factors
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affecting the toughness of ceramics and ceramic composites is extensive.

The microstructural dependence of fracture parameters of ceramics are given

in [1-12]. Particle and grain size effects are studied in [13-17].

Microcracking in particulate ceramic composites due to thermomechanical

stress is investigated in [18].

In this work microcracking in Nicalon/SiC ceramic composite is studied

for thermomechanical loading. Monolithic SiC (matrix material) and

composite specimens are first observed under microscope, and the fiber

distribution patterns are identified. Thus analytical studies relevant to

typical fiber distribution patterns (e.g., a single fiber embedded in an

infinite medium, two isolated fibers, a ring distribution of fibers, etc.)

are performed and the consequences on matrix microcracking are discussed.

Next the toughness of matrix material (SiC) is determined under various

temperatures (up to 800 C) using the micro-indentation technique (19,20].

The effect of fibers on the "apparent fracture toughness" of matrix is

determined experimentally again using the micro-indentation technique. A

theoretical model predicting the microcracking behavior is then developed.

Finally, the debonding strength of the interface at the initiation of

debonding is determined by a method combining experimental results and

finite element calculations.

2. The Material: Nicalon/SiC Composite

The material studied is Nicalon/SiC purchased from Amercom, Inc.,

Chatsworth, CA. The properties of the const'tuents are given in the

following table:
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Young's Modulus Coefficient of Thermal
E (psi) Expansion 0 (in/in/ C)

Fibers (Nicalon) 26xi0 6  3.1x10 6

Matrix (SiC) 55xi0 6  4.3xi0 6

It should be noted that this material is a reversed composite. That is,

stiffness of the matrix (SiC) is greater than that of the fibers (Nicalon).

The volume fraction of fibers Vf is approximately 0.35 and the void volume

fraction Vd is about 0.15. The composite is manufactured using the

chemical vapor deposition (CVD) method.

Using the information obtained from preliminary testing and considering

the size of the heating chamber of the furnace, the test specimens were

designed as follows:

12 pc. of (l/2)"x(l/2)"x(l/4)" 3-D braided Nicalon/SiC specimens
infiltrated by CVD to a minimum density of 2.3 g/c.c.

6 pc. of (i/2)"x(i/2)"x(I/4)" silicon carbide coated graphite
specimens coated on one face with SiC by CVD to a minimum
thickness of 0.020 inches.

The first set of specimens is used to determine the effect of fibers on

matrix microcracking and the shear strength of the fiber/matrix interface.

The second set is used to determine the fracture toughness of the matrix at

varying temperatures.

An examination of the composite specimens under microscope reveals that

there are basically four fiber distribution patterns: (a) an isolated fiber

(Photo 1), (b) two isolated fibers (Photo 2), (c) a circular array (ring) of
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fibers (Photo 3), and (d) closely packed, randomly distributed fibers. The

microcracks could be in the matrix or at the interface. Thus the analytical

studies presented in the next section are based on models simulating the

observed configurations.

3. The Theoretical Studies

The analysis for each specific model considered is outlined below.

(a) The single-fiber model

This model is designed to simulate situations seen in Photo 1. It is

assumed that a single fiber is embedded in an infinite matrix. The

microcracking configurations studied are shown in Fig. 1.

waatrix

(a) Radial Crack in Matrix (b) Interface Crack

FIGURE 1.

First the stress fields for the uncracked configurations are computed

in closed form for temperature rise as well as mechanical loads. Consider a

ceramic fiber of radius R embedded in an infinite ceramic matrix as shown in

Fir. 2. If the temperature is increased by T, the stresses in the fiber

and the matrix can easily be found by considering a uniformly loaded
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cylinder and a plane with a hole and matching the displacement at their

common boundary. After some algebra, we obtain:

for r < R rr (in the fiber); (I)
o80

a0  a(-)2
for r > R rr r (in the matrix); (2)a 08 a(r_

where

- m(l+V) - f(l+f)

a AAT; (3)

and

l+vm  l-Lf-2v2
m +m  Ef (4)

E mE f

Here (Eml Vmo am) and (Ef, Vf, af) are the Young's moduli, the Poisson's

ratios and the coefficients of thermal expansion for the matrix and fibers,

respectively. Assuming AT > 0, i.e. heating, and considering that vmmVf,

one may conclude immediately that if am <ft (aS omatrix is tensile and may

induce radial cracks in the matrix. On the other hand if am >

(a ) matrix is tensile with the possibility of debonding along the fiber-

matrix interface. In practice of course, in addition to the thermal

stresses described above, one has to include also the mechanical stresses

due to external loading and the residual stresses induced in the material

during the manufacturing process.
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Radial crack in the matrix. Consider the radial crack geometry shown

in Fig. 1(a). The formulation of this problem for uniaxial loading is given

in [21]. Here instead of external loads, the crack surface will be loaded

with the residual stresses derived in the previous section and expressed by

Eq. (2). Referring to [21], after some simplification the formulation of

the problem in terms of the crack surface displacement derivative f(t) can

be written as.

Jc+R f(t~dt + J+ [k11 (x,t) + k (~)ftd

r (17 +1)

2, p(x), R < x<c+R; (5a)

with the single valuedness condition:

[c+RJR f(t)dt -0; (Sb)

where

Ils~ A1.,t = 2s 122 X

+ A[(14s )s(s2 -R2 ) -s
3(s2-R 2

+~ ~ A1 (-)2 (t-S) 2 
-R

4t(t-s) 3

A1R
2 2 1_3R 2  

R2__

k1 fXt ~2 (+p 7)-[M(Ef+1) -1]2 tX2;

A =1-rn f AME M R2  fM(= +1A2nL .f7 s- m- ; M-
1+Em+ (f +M)(% - +2m)'

E4v EE f
3- ~m f 3-vf Jam 2(1+v~ )' 1 f -2(1+v f.) (6)
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For the problem under consideration, the crack surface will be loaded with

the negative of residual stress a,, given in Eq. (2). Thus,

-R
2

p(x) = x2' (7)

To solve the singular integral equation (5a), the following normalization

is used:

c c

X p + R + 29 for R < x < c+R and -1 < p < +1;
2 2c

2 + R + 2' for R < t < c+R and -1 < r < +1;

f(t) = g(7); kls(x,t) - K lls(Pr);

p(x) - q(p); kllf(Xt) - Kllf(P"r). (8)

Then Eqs. (5a,b) become:

dr + +1 [K (pr) + Kf(P,r)g(r)drI r-P 2 1 lls lfp,)(TT-1 -

ir( +1)q(p), -< P < +1; (9a)

and

I g(r)dr =0. (9b)
-I

The normalized crack surface displacement g(r) is singular at r - ±1 and may

be written as [22]:

g(r)- Cr)10)
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where G(r) is a bounded function and -1 < P < 0 is given by r21] as:

2cosr,3 + (A+A 2 ) - 4A1 (p+l)
2 

- 0. (11)

At the crack tip embedded in the matrix the stress intensity factor can be

defined as:

k(c) - RLim 02[x-(R+c)]Cy(XO) (12)
x-~~ 2R+c c]yy Imatrix*

Using Eqs. (5a), (8) and (10) and after some lengthy algebra, we obtain:

k(c) - -=2-- 20G(I). (13)
m

Noting that K - rgk(c), then the strain energy release rate is found to be:

E - (l-v2)k2(C); (14)
m m

or

C- (l-v2)R ()2 (15)

Defining R - t and noting that [_-€_ ak'(e), Eq. (15) becomes:,

=E (l-'v')Rc[k'(f)] 2 'm. (16)
I E Mm

The radial matrix crack will propagate when the strain energy release rate

reaches the critical strain energy release rate of the maerix, i.e., when
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GI - (G I)matrix* Equating Eq. (16) with (GCl matrix' we obtain the

critical fiber size as:

(Gc) matrixEm
Rc = m(l V)[k,()]2.(17)

m

However, the crack size (or e) is not known a priori. Therefore, we can

determine only a minimum critical fiber size which will occur when

g(E) - E[k'(C)] 2 is maximum. Thus,

Rmin (G c matrix Em (18)
max

Formula (18) can be used to conservatively determine the critical fiber size

for radial matrix crack suppression.

As an example, the fibers are assumed to be SiC and the matrix a glass-

ceramic (lithium aluminosilicate or LAS) with the following properties [23]:

-6
E - 85 GPa; v - 0.2; am- 9x10 /°C;mm m

-6
E f 200 CPa; Vf- 0.2; a f- 4x10 /=C.

(Gc interface - 20 Pa-m; AT - -1000'C; (KIc)matrix - 2 MPa/m; or

(G - (K )2 (l-V 2 )/E - 45.18 Pa-m.GIc'matrix Ic matrix rn m

Equations (9a) and (9b) are solved numerically for the material combination

defined above by using the collocation technique described in [24,25].

Figure 3 shows the variation of g(f) with . It is seen that the curve
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passes through a maximum around [g(c)]max = 0.075. It must be noted that

the variation of g(e) shown in Fig. 3 is for the specific material

combination used in the example. To assess the effect of the elastic

properties on the value of g(e), results are obtained for various ratios of

E m/Ef ranging from 0.2 to 5. These results are shown in Fig. 4.

As can be seen from Fig. 4, surprisingly the E m/E f ratio has little

effect on g(c). Therefore, one curve can represent all practical material

combinations, including the Nicalon/SiC being studied here. Using the value

[g()] - 0.075 and substituting into Eq. (18), we obtain R in m 148jum,
max c

which is larger than the actual fiber size used in such composites.

Interface crack along the fiber/matrix boundary. For this case, the

crack geometry is shown in Fig. l(b). It is well known that at the

interface crack tip the stresses and strains have an oscillatory singularity

[26-30] and the stress intensity factors cannot be defined by using their

classical definition. Instead, we will determine the strain energy release

rate at the crack tip which is not affected by this peculiar behavior. The

problem does not appear to have been solved for thermal stresses. Using the

solution given by Toya [31] and the superposition principle we present here

a solution for the residual stress loading expressed by Eqs. (1) and (2).

For the plane loading shown in Fig. 5, the strain energy release rate at the

interface crack tip is given as [31]:

1
G - !kRA0 (l+4A2)iNNsinaexp[2A0 (-a)]'; (19)

where
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POk - l- LI - ( f+*f1m)/(Pm+-m1f); fo " Pm(l+f)/(m+mf)

k ++= l+Ef0 m~+f)0 +e.

1+77 1+'X
A 0 - m + - ); Ao - nv/2r;

d1 1-k
N - (co--) + (N -T )exp[i(20-a)+2o(a-ir)]; c o - Go+iHo;

Go - [-(N -T ){l-(cosa+2Aosin)exp[2o(-a)])

-1 (l-k)(l+4A2)(N -r )sin2 acos2o]/

{2-k-k(cosa+2Aosina)exp[2o(ir-a)]);

Ho - [ (I-k)(l+4A2)(N.-T )sinQsin2o

+ l+---c --{l+(cosa+2Aosina)exp[2AO(w-a)]}]/1+6
m

1 4mieco
dl - (N-T) +

m

where e is the rotation at infinity, R is the complex conjugate of N, and

T , N., R, a and 3 are shown in Fig. 5. To obtain the solution for a

constant crack surface pressure a, which is the loading shown in Fig. 1(b)

and expressed by Eqs. (1) and (2), consider the stress distribution for a

cylindrical inclusion embedded in an infinite matrix under uniaxial tension

ao  (Fig. 6). The radial stress along the fiber/matrix interface may be

expressed as [32]:

a a° - R u , R4,\1..T,.(0

arr - (-cos20) 2ao(A(R)2 + B[3()4-4(9)2]cos26); (20)

13



where

(l-2vf)m - (l-2vm)Pf

4[(1-2vf)m +f]

and

B - U v-Afl

Superimposing to this expression a uniaxial loading co in the x direction,

with r-R, the radial stress along the fiber/matrix interface becomes

constant (independent of 8):

arr - ao0 (l-4A). (21)

Thus, to obtain a stress a-constant at the interface, we must have:

co - a/(I-4A). (22)

The strain energy release rate at the crack tip for the thermal loading

is then obtained by using Eq. (19) with T - N - a and .- " Defining:

GE
Gm (23)

the critical fiber size for the suppression of interface cracking can be

obtained by equating G to G, the total critical strain energy release rate

of the interface. Again, noting that the crack length is not known a

priori, we obtain the minimum critical fiber size Rm i n when G' is maximum,
c

C'. Thus:
max

14



GE
Rmin c m

= 2(l+vm)C2G' (24)
m max

As an example, we assume the material properties given in the previous

section. Figure 7 shows the variation of G' with the crack angle a. Again,

it is seen that the curve reaches a maximum of G' - 0.53 at a - 650. With

these values and AT - +1,O00C, Eq. (24) gives Rm i n _ ii.7pm which is of the

same order as the actual fiber size. To assess the effect of the elastic

properties, the ratio of Young's moduli, E m/Ef, is varied from 0.2 to 5.

Unlike the case of radial cracking, as Fig. 8 shows, for interface cracking

the normalized strain energy release rate G' is heavily dependent on the

elastic properties of the constituents.

(b) Interaction of two fibers

This model is designed to simulate situations similar to those seen in

Photo 2. In this case it is assumed that two fibers are embedded in an

infinite matrix and subjected to mechanical or thermal loads. Again we

considered two crack configurations: (a) a radial matrix crack and (b) an

interface crack as shown in Figs. 9(a) and 9(b), respectively. Due to the

complexity of the geometry, here numerical and approximate methods have been

used to develop the solutions. For the uncracked geometry, the stress

fields in the matrix and at the fiber/matrix interface are determined using

the finite element technique. We have developed a finite element computer

procedure using ANSYS [33] which gives the stress and displacement fields

for in-plane mechanical and thermal loadings. Figures 10 to 15 show the

typical stress distributions of the two-fiber model due to thermal loading

15



and Figs. 16 to 21 show the stress distributions due to mechanical loading.

In either case effects of various Young's modulus ratios and fiber spacings

were investigated. It is found that the stress distributions are strongly

influenced by fiber interaction.

Matria

/ HR-P
-#. bd I "

(a) Radial Crack in Matrix (b) Interface Crack

FIGURE 9.

The crack configurations shown in Figs. 9(a) and 9(b) are handled as

follows: For the radial crack, we developed an approximate solution in

terms of a singular integral equation. The approximation is due to the fact

that the kernel used in the singular integral equation is taken from the

single fiber model, while the crack surfaces are loaded with the negative of

the stresses obtained above. This means that Eqs. (5) to (18) are still

valid with the understanding that p(x) in Eq. (5a) is now replaced by the

stress obtained for the uncracked two-fiber geometry. The numerical results

are computed for varying material properties and fiber separation (25R) and

are displayed in Figs. 22 to 24. The results indicate that (a) material

properties have very little effect on the normalized fracture energy, g(c),

as shown in Fig. 22; (b) the separation plays a significant role on whether

crack arrest is possible (e.g., Fig. 23 indicates that when 6 is large,

16



i.e., the fibers are far from each other, the normalized strain energy

release rate passes through a maximum making crack arrest possible; on the

other hand when 6 is small, i.e., when the fibers are close to each other,

there is no possibility of radial crack arrest); and (c) the variation of

the normalized strain energy release rate g(e) is drastically different for

the single-fiber and the two-fiber geometries.

For the interface crack problem, again an approximate solution based on

Toya's single-fiber model [31] is developed. First it may be noted that

Toya's solution [31] (Fig. 25(a)) can be considered as the superposition of

an uncracked geometry (Fig. 25(b)) and a crack loaded with the negative

stresses obtained in the first part (Fig. 25(c)). Then the strain energy

release rate can be computed by considering only the perturbation problem

shown in Fig. 25(c). Next the thermal- or mechanical-loading induced

tangential and radial stresses at the fiber/matrix interface, as shown in

Figs. 10 to 21, can be approximated in the least square sense to yield the

crack surface tractions prescribed in Fig. 5(c). Thus in Toya's solution,

Eq. (19), the forces N and T and the angle 0 are replaced by Neq, Teq and

Oeq, respectively. The numerical results are displayed in Figs. 26 to 30

for thermal and mechanical loading, where the normalized strain energy

release rate is plotted against the interfacial crack angle a. The material

properties and the crack spacing are varied and the results are compared

with those obtained for the single-fiber case. It is found that the

properties of fibers and matrix and the spacing of fibers may affect the

interfacial crack propagation considerably. Furthermore, contrary to the

radial crack case, the variation of G' is similar qualitatively for both the

17



single-fiber and the two-fiber cases, making interfacial crack arrest

possible (see Figs. 27 to 30).

(c) The ring model

This model is designed to simulate situations similar to those seen in

Photo 3. The model consists of a single fiber surrounded by a circular

array of fibers. This array of fibers is assumed to form a ring of material

with properties obtained by considering it a composite. The model is shown

in Fig. 31. The stress distribution in the uncracked composite due to

mechanical and thermal loadings can be obtained in closed form using

Mitchell's solution [34] for the four regions shown in Fig. 32.

o K, /C -,'

The Ring Model

FIGURE 31.

Assuming plane strain,

fz i - JEzZ2 - Ezz3 - - 0; (25)

i.e.

- r + a )] + afAT; (26)zzi  E f zzI  f arr a8

ez - -[a V(ar 2 + a00 2 )] + amAT; (27)
m
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CZz 3 - EjaZZ3 " 113(arr3 + a 0 3)] + (28)

zz4 -E [azz4 - /43 (arr4 + a094)] + c4 AT. (29)
43

Equations (26)-(29) can also be written as:

az i - Vf( rri + aool) - EffAT; (30)

a 2 - I
/m (arr2 + a80 2 ) - E AT; (31)

aZZ 3 - Li3 (arr3 + a0 0 3 ) - E3C3AT; (32)

azz4 -/43 (ar 4+ a 0 0 4 ) -E4 3Q4AT. (33)

In these equations Em, Eft Vm, 1 f'm, af refer to the Young's moduli,

Poisson's ratios and thermal expansion coefficients of the matrix and

fibers, respectively, while E3, u3, E4 3 ,v 4 3 are the composite elastic

properties for regions 3 and 4, which are described below with the geometry

shown in Fig. 33.

Rt"-in 3 contains a group of fibers randomly distributed in a

concentric annular domain with inner radius b and outer radius c. The

I , and ... m.al e xpan si o coeffjic rnt ..

of the composite are dependent on n, the number of the fibers in this domain

......... h~~r ,_,thev can --? deo err i: : -

virtue of the ruIe o :. -i turs:

E-3  - fc bz m c2- b2

3  + c 2- bZ- na : "

V 3 " +fc .b +  m c 2 b 2 (35)
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na2  c2-b2 -na2
a3 = a f2-b2 + Lm  c 2 -b 2  (36)

Region 4 is an infinitely extended domain with a hole of radius c. The

material in this region is transversely isotropic and the Young's modulus,

Poisson's ratio and thermal expansion coefficient of the material are

determined by the following formulas (see Fig. 33):

E - 1 . (37)
EVf V mE

where E is the Young's modulus in xj- x2 plane (see Fig. 33), Vf is the

volume fraction of fibers defined as:

Vf- (n+2)ra2  and V - 1 - Vf; (38)

f rc 2  M f

with n the number of fibers inside the ring.

4c2-(n+ 3 )ira2  (n+3)nra 2  .
Vfw f f m 4c2  wf 4c2  Vm ,  (39)

_c-_(n+3_a2 (n+3)ra2

a Vff + (1-V )am - 4c2  af + 4c (40)

-faf + flc 4c f 4c m
+ ~i f + C~

where v and a are the Poisson's ratio and the thermal expansion coefficient

...... :2 t h.. "' 2:' :n d ~ i t:he x. i e i n

Furthermore

4 3 - w (42)

and
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a4  = o; (43)

where Li4 3 and a4 are properties in x3 direction.

Influence of the surrounding fibers in the ring model is considered in

the average sense. The influence of the surrounding fibers can be adjusted

either by changing the value of b, i.e., changing the closeness of the fiber

cluster or by changing the number of the fibers n in the ring. When the

number of the fibers in the ring is changed, the volume fraction of the

fibers in the ring is changed; and thus the Young's modulus E3, Poisson's

ratio V 3 and the thermal expansion coefficient a3 will all change and the

influence of the ring (fiber cluster) will be different.

The continuity conditions at the interfaces can be written as:

u I - u2 , V 1 - V2 9  rr8l - rr92, CrtI - arr2; (r - a) (44)

U2 - u 3 , V2 - V 3 ,  
r
02 - rr03, a rt - a rr 3 (r - b) (45)

u 3 - u 4 , v 3 - v 4 , r9 3 - rr 4, arr3 - arr4. (r - c) (46)

Solvin; the equations, we obtain the expressions for stresses in closed

' -:a,. .. .i-2 ,ery a

t_.pical distribution of c is given in Fig. 34. The crack problem for this

4. Exerlmental Work

The experimental program is designed to accomplish the following: (a)

to obser:e and docu=.ent the microcracking patterns of a ceramic-fiber/
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ceramic-matrix composite under high temperature, (b) to obtain the variation

of the fracture toughness of the matrix material with temperature, (c) to

evaluate the effects of such factors as fiber size and distribution, thermal

expansion coefficients, and temperature rise on matrix microcracking of

ceramic composites, and (d) to determine the shear strength at the

fiber/matrix interface.

(a) The experimental set-up

The experiments consist of micro-indenting monolithic and composite

specimens with a microhardness indenter under various temperatures and

recording the resulting microcracking patterns using a microscope. For this

purpose an ATS series 3320 split-tube laboratory furnace (Applied Test

Systems, Inc., Butler, PA) which can be heated up to 3000*F in 30 minutes

and a Nikon UM-2 universal measuring microscope are used. The indentation

load is recorded by a 10-lb super-mini load cell (Interface, Inc.,

Scottsdale, AZ) and the temperature is read by a type-B platinum/platinum-

30% rhodium thermocouple. A sketch of the experimental set-up is shown in

Fig. 35. Figure 36 shows the series 3320 split-tube laboratory furnace.

(b) Effect of temperature on toughness of matrix material

The toughness of the matrix material is obtained by indenting

monolithic SiC coated specimens described in Sec. 3. The specimens were

first mounted in a bakelite mold, polished with paste of extra fine alumina

and diamond powders (as small as half a micron) and indented with a diamond

Vickers indenter (Wilson Instruments, Inc., Bridgeport, CT). They were then

examined under optical and scanning electron microscopes to document pre-

existing microcracks and only a few of them were observed. To ascertain the

eftect of temperature on the toughness of the material, the testing
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temperature was varied from room (25°C) to 800'C. Thus micro-indentation

tests were carried out at 25°C, 250°C, 600'C and 800'C. At each temperature

level the indentation load P was recorded by the super-mini load cell and

the half size of the impression D, as shown in Fig. 37, was measured by the

Nikon UM-2 microscope. From this information one may calculate the

toughness of the material using a typical formula as given below:

KIc - 3/21 (D32) (47)

where P is the applied load, D the half crack length and s - 680 is the

indenter angle. Details of the indentation technique can be found in Lawn

et al. [19] or Evans [20]. The results for the fracture toughness of SiC

at various temperatures are displayed in Fig. 38. One may note that, as

expected, there is some scattering in the results. However, more

importantly it seems that the f-actur2 toughness of SiC decreases

significantly with increasing temperature. For example Kic decreases from

approximately 4.5 ksi4 -n at roo,n ter-,1cature to 3.5 ksilJn at 800°C. The

fracture toughness of the matrix was also measured from the composite

s oci :7'S. To preclude an% effect of fibers on the results, the indentation

was done in sites with no neighboring fibers. The same results were

obtained, as will be seen later from the results presented in Figs. 40-43.

LA; :ffect of f<- md " : nr :r > cn 'he "apparent tou,-hness" of the
matrix

Just like the case for the monolithic specimens described in

Sec. 4(b), each Nicalon/SiC ceramic composite specimen was also first

mounted in a bakelite mold, polished and examined under optical and scanning
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electron microscopes to document the pre-cracking (existing microcracks) and

the fiber distribution patterns used in the analytical model. Again only a

few existing microcracks were observed. The specimens were then heated in

the ATS furnace up to 3000°F. The heated specimens were later examined

under optical and scanning electron microscopes. Again no further

microcracking was observed due to temperature rise alone. This confirms the

claim of the manufacturer and our preliminary calculations, using the

single-fiber model, Sec. 3(a), that for this material microcracks do not

occur under thermal loading alone. The combination of thermal and

mechanical loadings is necessary to generate microcracks.

Next the I/2"xl/2"xl/8" Nicalcn/SiC composite specimens with fibers

facing up were also polished as before and in the matrix of the composite,

microcracks were generated again using the indentation technique at various

temperatures ranging from room to 800°C. To ascertain the effects of

fibers, the specimens were indented at locations of varying fiber density

and the fracture toughness was calculated using Eqn. (47), as if the fibers

did not exist. Since the fracture toughness described above contains the

effect of fibers, from here on it will be referred to as the "apparent

fracture toughness" of the ratrix material (SiC). The effect of fibers is

introduced through the concept of local volume fraction: A cell of fixed

proportions, Fig. 39, (say, b/a-3, where 2a is the crack length and 2b is

tzle total length of the cell) is selected with the indentation imprint at

the center and several fibers scattered within the composite cell. The

local volume fraction Vf is defined as the ratio of the total cross-

sectional areas of fibers to the total area of the composite cell. As a
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consequence, at each indentation site, one obtains a different local Vf.

The experimental results obtained at room (25°C), 250°C, 600°C and 800°C are

shown in Figs. 40 to 43. In each figure the "apparent fracture toughness"

is plotted against the local volume fraction of fibers, Vf, at a given

temperature. It is observed that the "apparent fracture toughness"

decreases with increasing local volume of fibers and also with increasing

temperature. This means that it is easier to generate microcracks at a

location where the density of fibers is higher and when the temperature is

increased. The result that the "apparent fracture toughness" of the matrix

is decreasing with increasing local volume fraction must be expected, since

the composite under consideration is a so-called "reversed" composite,

meaning that the matrix is stiffer than the fibers. Here the Young's

modulus of the matrix material (SiC) is E m-55x106 psi and the Young's

modulus of fibers (Nicalon) is Ef- 26xlO 6psi. These results are summarized

in Fig. 44, where the experimental data are presented with fitted straight

lines.

(d) Determination of interfacial strenath and interfacial stresses

The interfacial strength at debonding initiation is determined by a

combination of experimental measurements and finite element analysis. First

- !o dcad at debondin, initiation is measured. For this purpose so:ne

specimens were micro-indented at room temperature using the Wilson Tukon 300

microhardness tester whose attached microscope enabled us to indent at the

desired site and to observe the ensuing microcracks. For instance, two

perpendicular matrix cracks generated by loading a Vickers indenter at 600
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grams is shown in Photo 4. Photo 5 shows a partial interfacial crack

produced at the interface of a fiber which is surrounded by a circular array

of fibers. The Vickers indenter was loaded at 50 grams with an eccentricity

of approximately three quarters of the fiber radius. Photo 6 depicts

complete debonding of two isolated fibers, each was loaded eccentrically

with a Vickers indenter at 50 grams. The eccentricity in either fiber is

about one half of the fiber radius. From these observations we can conclude

that the micro-indentation fracture behavior of ceramic composites is

affected not only by the magnitude and location of the indenter but also by

the distribution of the fibers, i.e. fiber interaction.

To simplify the calculation, the indentation is performed at isolated

fiber locations when determining the interfacial shear strength. On can

then neglect the far away fibers and model the problem as a fiber surrounded

by an infinite matrix. In general, however, the model used is a single

fiber surrounded by an annulus of matrix material with the rest of fibers

and matrix being modeled as a transversely isotropic composite as shown in

Fig. 45. A similar model was developed in [35]. A number of debonding

experiments were conducted and in each case the critical load P cr, which is

the load at debonding initiation, and the fiber size were recorded. During

the debonding test the indenter is presse at the center of the fiber and

_-'e load is arslied incremensanl until complete debondint occurs. Through

a regression analysis, it can easily be shown that the critical loads P

are proportional to the square of fiber radii (see Fig. 46). This finding

indicates that the results are consistent for all the fibers with

different sizes.
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To relate the critical debonding load to the strength of the fiber-

matrix interface, one needs the distribution of interfacial stresses. For

this purpose a finite element model has been developed. In the finite

element model the loading is specified as a concentrated force acting at the

center of the fiber (Fig. 44(b)). In the analysis ANSYS (33] finite element

code is used. Since the geometry and loading are axisymmetric, the

axisymmetric element is employed. To check the accuracy of the solution,

the fiber and the matrix are assigned the same mechanical properties and the

results obtained are compared with the closed form Boussinesq's solution

[34]. The results agree extremely well. The calculations are performed

in two steps, i.e. first a course mesh is used and later a finer mesh is

employed. A typical mesh used in the computation is shown in Fig. 460,. The

normalized shear and radial stresses at the fiber-matrix interface are shown

in Fig. 47. The stresses due to temperature change were also considered and

are displayed in Fig.48. The debonding shear strength is the maximum shear

strength when the load is Pcr" Based on the analysis given above, the shear

strength can be calculated by the following formula:

TiK 1(48)r : 4 -,*tCal I

Pcr/R +M m

where K is a constant (in our e:%:nmple K = 0.13), PC, the critical load

(i.e., the load at the onset of debonding), E Young's modulus of the, t m

matrix, a thernial expansion coefficient of the matrix, R radius of the

fiber being tested and AT change in temperature.
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5. Theoretical Prediction and Comparison with Experimental Results

To explain and predict the observed experimental results given in the

previous section, a theoretical model has been developed. In a composite

material, the distribution of fibers may assume many patterns such as an

isolated fiber, two interacting fibers, a ring of fibers, or random. Here

we assume that the fibers form a ring of composite material with elastic

properties calculated based on a volume fraction equivalent to the volume

fraction in the cell described above. The geometry of the model is shown in

Fig. 49. Since the properties of the constituents are fixed, from

dimensional considerations, it can be shown that for the ring model the

stress intensity factor for a crack of length 2a in a uniformly loaded

composite can be expressed as:

KI - a f(Vf, R/a, AT), (49)

where a is the crack surface traction, Vf the local fiber volume fraction,

R the fiber radius, and AT the temperature rise. When a reaches the

critical value (a o)c , KI will become the toughness of the matrix,

(K cdmatrix. Thus the "apparent fracture toughness", which is defined as:

(KIc)apparent- (C o)c , (50)

can be e:.:pressed in terms of Vf and R,a as:

(K lcmatrix (51)
(KIc)apparent -f(Vf, R/a, AT)'

where
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f(Vf, R/a, AT) - oK1  (52)

is the normalized stress intensity factor.

The stress intensity factor KI is determined using the finite element

program ABAQUS [36]. Thus for a given R/a and AT, a (KIc)apparent versus Vf

curve can be plotted. Numerical results for R/a - 0.95 and T - 25°C, 250°C,

600°C, and 800°C have been computed. The finite element mesh used in the

calculations is shown in Fig. 50. The theoretical results obtained for each

temperature level are plotted against the experimental results and are

depicted in Figs. 51 to 54. It is seen that the agreement between the two

sets of results is good. The model also predicts a decreasing "apparent

fracture toughness" with local volume fraction of fibers. For low volume

fractions and high temperatures, the quantitative prediction is excellent.

However, for large volume fractions and low temperatures, there is some

deviation between the experimental and the predicted results. This is

expected since our model does not take into account the specific

arrangement of fibers around the crack tip and the possible mode Ii effects,

which may, influence the "apparent fracture toughness" significantly.
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